Search results for " Supervised learning"
showing 5 items of 5 documents
Evaluation of a Support Vector Machine Based Method for Crohn’s Disease Classification
2019
Crohn’s disease (CD) is a chronic, disabling inflammatory bowel disease that affects millions of people worldwide. CD diagnosis is a challenging issue that involves a combination of radiological, endoscopic, histological, and laboratory investigations. Medical imaging plays an important role in the clinical evaluation of CD. Enterography magnetic resonance imaging (E-MRI) has been proven to be a useful diagnostic tool for disease activity assessment. However, the manual classification process by expert radiologists is time-consuming and expensive. This paper proposes the evaluation of an automatic Support Vector Machine (SVM) based supervised learning method for CD classification. A real E-…
Weakly Supervised Object Detection in Artworks
2018
We propose a method for the weakly supervised detection of objects in paintings. At training time, only image-level annotations are needed. This, combined with the efficiency of our multiple-instance learning method, enables one to learn new classes on-the-fly from globally annotated databases, avoiding the tedious task of manually marking objects. We show on several databases that dropping the instance-level annotations only yields mild performance losses. We also introduce a new database, IconArt, on which we perform detection experiments on classes that could not be learned on photographs, such as Jesus Child or Saint Sebastian. To the best of our knowledge, these are the first experimen…
Contribution à l’apprentissage de représentation de données à base de graphes avec application à la catégorisation d’images
2020
Graph-based Manifold Learning algorithms are regarded as a powerful technique for feature extraction and dimensionality reduction in Pattern Recogniton, Computer Vision and Machine Learning fields. These algorithms utilize sample information contained in the item-item similarity and weighted matrix to reveal the intrinstic geometric structure of manifold. It exhibits the low dimensional structure in the high dimensional data. This motivates me to develop Graph-based Manifold Learning techniques on Pattern Recognition, specially, application to image categorization. The experimental datasets of thesis correspond to several categories of public image datasets such as face datasets, indoor and…
Effectively Predicting the Presence of Coronary Heart Disease Using Machine Learning Classifiers
2022
Coronary heart disease is one of the major causes of deaths around the globe. Predicating a heart disease is one of the most challenging tasks in the field of clinical data analysis. Machine learning (ML) is useful in diagnostic assistance in terms of decision making and prediction on the basis of the data produced by healthcare sector globally. We have also perceived ML techniques employed in the medical field of disease prediction. In this regard, numerous research studies have been shown on heart disease prediction using an ML classifier. In this paper, we used eleven ML classifiers to identify key features, which improved the predictability of heart disease. To introduce the prediction …
Classification par méthodes d’apprentissage supervisé et faiblement superviséd’images multimodales pour l’aide au diagnostic du lentigo malin en derm…
2021
Carried out in collaboration with the Saint-Étienne University Hospital, this work provides additional information to help the skin diagnosis by providing new decision methods on Lentigo Maligna and Lentigo Maligna Melanoma pathologies. To this end, the modalities regularly used in clinical conditions are made available to this work and are orchestrated within a multimodal process. Among image modalities, may be mentioned the clinical photography, the dermatoscopy, and the confocal reflectance microscopy. Initially, the first steps of this manuscript focus on reflectance confocal microscopy as the work in computer diagnostic assistance is relatively underdeveloped, in particular on the dete…